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Abstract
Embedded, interactive or reactive systems have to face un-
expected events coming from their environment. Taking this
kind of event into account at design time raises the challeng-
ing issue of the dynamic behavior adaptation at runtime. In
this paper, we investigate a DSL approach to address this
problem. This DSL, called Lub, is a context oriented pro-
gramming language. It is defined as a featherlight adapta-
tion of Pharo which enables to temporarily change the base
of the method lookup when a message is sent to an object.
This language is evaluated with a running example of a fleet
of drones facing an unexpected problem of GPS loss.

Keywords Behavior adaptation, Context Oriented Pro-
gramming, Dynamic Lookup

1. Introduction
The need for dynamic adaptation especially arises in live
systems where the events coming from the running envi-
ronment cannot be entirely taken into account. A typical
example would be an autonomous drone flying on a pre-
programmed mission. Its software relies on physical sensors
to perform its task, like plotting a route using a GPS signal
to fly from one point to another. This behavior is defined at
compile time and it is usually not designed to be modified at
runtime to face unexpected events. For instance, if the drone
loses its GPS signal and if it is not programmed to operate
without it, the original behavior cannot be executed and the
drone is unable to fulfill its mission.

In this paper, we investigate behavior adaptation at run-
time by means of a context-oriented programming lan-
guage. We explore through our DSL the notion of context.
This notion comes from the Context Oriented Programming
paradigm. In this approach, a context is traditionally defined
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with specific language constructs allowing software mod-
ifications or adaptations. By using contexts, the developer
avoids the use of multiple if blocks for each specific be-
havior. Our drone would then have a default behavior while
using its GPS, and when the GPS is lost, it enters a given
context which allows it to continue its navigation without a
GPS, for example by using a camera instead.

While the definition of context can be subject to subtlety,
we propose to reify it as a pure language classifier, namely
a class. When the need for a software to adapt to a situation
arises, any object from the system that would need adap-
tation could change its context, i.e. change its class (and
its behavior accordingly) while retaining its identity, i.e. its
state and relations with other objects. Any other object in-
stance of the same class would not be affected. To this end,
we introduce the notion of lookup base, which enables the
extension of the original lookup mechanism by specifying
the base class from where to start the method lookup.

The main contributions of this paper are:

• The definition of Lub, a featherlight domain specific lan-
guage for dynamic context oriented programming

• An evaluation of the first Lub implementation with a case
study of a drone adaptation simulation

The remaining of this paper is organized as follows: in
section 2 we describe our motivation through a simple exam-
ple. In section 3 we describe the context oriented program-
ming approach and we present the Lub language. In section
4 we show an evaluation of Lub in two use case scenarios.
Related works are discussed in section 5 and to conclude in
section 6 we present the current and future work.

2. Motivating Example: the fleet of drones
and the GPS loss

This section describes a simple example which aims at un-
derlying the need for dynamic adaptation.

In this example a fleet of drones is composed of two
drones moving close to each other in a given environment.
Since the environment is not entirely known, it is not possi-
ble to predict everything that could happen during the flight.
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Each drone relies on its own GPS module to plot its route
and fly without any incident. They also use proximity sen-
sors to control their flight formation and maintain their rel-
ative positions to each other while avoiding potential obsta-
cles. During the flight, one of the drones loses its GPS signal.
Therefore, it has now no capability to guide itself as its sen-
sors are sending back erratic or null data. Both drones enter
a standby mode waiting for the situation to be resolved: this
is the predefined behavior. If this behavior is required to be
modified to enable the guidance by other means, the mission
has to be aborted and the software has to be updated offline.

3. The Context Oriented Approach
This section describes a possible solution to the drone prob-
lem using context oriented programming. This simple solu-
tion raises questions from which we introduce our proposi-
tion.

3.1 Dynamic context adaptation
Let us say that the loss of one of the two GPS was in fact per-
fectly anticipated. The software has to adapt to the situation.
It could be programmed on a case-by-case basis, i.e. with
as many if blocks as expected specific situations we think
the system would meet. But then, behavior would be spread
into the source code instead of being factored in specific ob-
jects. In addition to the fact that it is not an object oriented
approach, it would make code more difficult to read, to un-
derstand and to maintain (Costanza and Hirschfeld 2005).

Context Oriented Programming (COP) languages, as de-
scribed by Salvaneschi et al. (2012), bring concepts and
mechanisms for behavior adaptation. For example, the con-
cept of layer has been introduced in COP, allowing the devel-
oper to define and dynamically choose behaviors depending
on a context (Costanza and Hirschfeld 2005). It is the most
common construct for context specific behavior in COP lan-
guages (Salvaneschi et al. 2012). Here, our GPS-less drone
could activate a layer allowing him to communicate with its
mate drone to rely on its functioning GPS. The following
pseudo-code illustrates a typical solution with this approach:

c l a s s Pos i t i onTracke r {
. . .
l a y e r GPSPosit ionTrackerLayer {

// f i n d p o s i t i o n u s i ng the GPS s en s o r
p i n po i n tPo s i t i o n ( ) { . . . }

}

l a y e r RemoteGPSPosit ionTrackerLayer {
// contac t mate drone and use i t s GPS
// to p i n po i n t r e l a t i v e p o s i t i o n
p i n po i n tPo s i t i o n ( ) { . . . }

}
}

p u b l i c c l a s s main ( ){
. . .
with ( GPSPosit ionLayer)

po s i t i o nT ra ck e r . p i n p o i n tPo s i t i o n ( ) ;
}

In this code, the with keyword activates a specific layer
before executing a block of code. Our problem here is that
the choice of the layer to use is tied to the loss of the GPS.
It is not possible to use a specific layer, i.e. activate or de-
activate it, from another thread than the base program (Ap-
peltauer et al. 2011). Typically, we cannot trigger a layer ac-
tivation or deactivation based on an external event (our GPS
loss) without keeping track of the current layer in a global
variable or as many as needed in a complex system (Kam-
ina et al. 2011). To adapt our drone in our base program, we
would need to use this workaround as follows:
. . .
onEvent( GPSON) {

cu r r en tLaye r := GPSPosit ionTrackerLayer ;
}

onEvent( GPSOFF) {
cu r r en tLaye r := RemoteGPSPosit ionTrackerLayer;

}
. . .
p u b l i c c l a s s main ( ){

. . .
with ( cu r r en tLaye r )

po s i t i o nT ra ck e r . p i n p o i n tPo s i t i o n ( ) ;
}

Behavior adaptation is easily done, and our drone could
continue to function properly without interruption. However,
as noted by Kamina et al. (2011), in most COP languages
layers can only be activated within a block and are automat-
ically turned off at the end of this block. That means that
context specific behavior cannot be active outside a scope
bounded by the block of code. Each time the pinpointPosi-
tion() function needs to be called, a layer activation using
the with keyword must be done to trigger the proper behav-
ior. Furthermore, as layers are class based, layer activation
cannot be specific to only one instance of a class. We would
have two PositionTracker instances, one for determining the
drone position and one for the other drone it is flying with,
but we could not factor the code into the same layer activa-
tion. Subtle layer management would be needed to decide
which layers each object should use or not:
p u b l i c c l a s s main ( ){

. . .
// Computing c u r r e n t drone p o s i t i o n
// depending o f the c u r r e n t l a y e r
with ( cu r r en tLaye r )

po s i t i o nT ra ck e r . p i n p o i n tPo s i t i o n ( ) ;
. . .
// Computing the mate drone p o s i t i o n
// t o f l y i n c l o s e fo rmat ion
with ( RemoteGPSPosit ionTrackerLayer)

anOtherPos i t ionTracker . p i n p o i n tPo s i t i o n ( ) ;
}

The DSL we investigate to address these problems aims
at:

• Adapting object behavior on a per-instance basis, so that
two instances of the same class can behave differently
within the same block of code.

• Enabling behavior adaptation at runtime without thread
or scope limitations, i.e. once a particular object has en-
tered a specific context, it keeps its new behavior until
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future context change. The context change may be trig-
gered from an outer thread.

3.2 A dynamic DSL for Context Oriented
Programming

In this work, we address the problem of behavioral adapta-
tion at runtime by means of a DSL called Lub. This DSL
is a featherlight adaptation of Pharo (Black et al. 2009), a
Smalltalk dialect. Lub is a dynamically typed object oriented
language: it extends Pharo with the ability to temporarily
change the base of the lookup when a message is sent to an
object.

3.2.1 Benefits of a DSL approach

pinPoint()

1
Navigator

pinPoint()

PositionTracker

pinPoint()

ExternalFacility<<system>>

Drone

1

: Navigator: PositionTracker

: ExternalFacility

pinPoint()
lookup(pinPoint)

lookup(pinPoint)

Figure 1. Updating the receiver to adapt message answers

This DSL-approach is a promising prospect since it can
be efficiently implemented in an existing language, namely
Smalltalk. As an illustration of this approach, we introduce
in figure 1 an excerpt of the model used with the fleet of
drones and the GPS loss case study. In this model, Naviga-
tor is in charge of the route. It relies on the pinPoint service
provided by class PositionTracker, which is in charge of
the GPS signal. At runtime, when an instance of Navigator
sends a pinPoint message to its associated instance of Posi-
tionTracker, a lookup of method pinPoint is triggered from
class PositionTracker.

Now we suppose that the GPS signal is lost. As a conse-
quence, the instance of PositionTracker is not able to pro-
vide the expected pinPoint service. In this case, if another
drone is nearby, it can provide its own pinPoint service
through a dedicated point to point connection. In the model
of figure 1, the other drone is depicted by class Drone. The
services that this drone can provide through the dedicated
connection are gathered in the facade class ExternalFacility.

At runtime, the receiver of the pinPoint message can be
either an instance of PositionTracker or an instance of Ex-
ternalFacility. This ability to change the receiver of a same
message relies on polymorphism and late binding. However,
the responsibility of this change falls to the instance of Navi-
gator. If the link between the two initial instances is required
to remain unchanged, then the receiver of the message must
have itself the ability to change on demand its answer to this
message. This can be easily achieved by delegation, but this
has to be provided by its interface. Moreover, this solution
to the problem of GPS loss has to be foreseen, designed and
implemented far before the execution.

1
Navigator

pinPoint()

PositionTracker

pinPoint()

ExternalFacility<<system>>

Drone

1

: Navigator: PositionTracker

pinPoint()
lookup(pinPoint)

lookup(pinPoint)

: ExtFacilityLUBpinPoint()

ExtFacilityLUB
current

Figure 2. Update of message answer by Lub

Figure 2 depicts the specific adaptation abilities of Lub
in this precise case. In this version, a lookup base named
ExtFacilityLUB is associated with class ExternalFacility
(which is no longer required to inherit from Position-
Tracker). Its instances can be dynamically associated with
any object, without any constraint. They enable the lookup
of method pinPoint from the objects they are associated
with, even if they are not instances of PositionTracker or of
one of its subclasses. As depicted by figure 2, the behavior of
pinPoint depends on the presence of a link between the re-
ceiver of the message and a lookup base. As a consequence,
the link between the instance of PositionTracker and the
instance of Navigator remains unchanged whereas the be-
havior of pinPoint may vary. Moreover, this variation is not
provided by the interface of PositionTracker and it does not
rely on delegation. This variation is not even required to be
designed before the execution. It can be implemented man-
ually at runtime.

3.2.2 Language design

name
LookupBase

name
StructuralFeature Attribute

Operation

Inheritance name

Classsuperclass
1

source
1

subclasses
*

target
1

initialize 0..1

select
*

target1

features *

Figure 3. Lub Infrastructure

Figure 3 depicts the infrastructure of the DSL. A Lub
specification is basically a set of named classes composed
of named structural features, namely attributes and opera-
tions. A class can be derived from at most one class (simple
inheritance). One of the operations associated with a class
may play the role of instance initializer. So far, these lan-
guage features are not original. The specifics of Lub lies on
the lookup base depicted by class LookupBase in figure 3.
It is associated with a target class and with a subset of its
structural features. It is a named classifier and it can be in-
stantiated.

The object runtime model of Lub is depicted by figure 4.
An instance of a Lub class corresponds at runtime to an in-
stance of class InstanceRecord. An instance of a Lub lookup
base corresponds to an instance of class LUBRecord. In both
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Figure 4. Lub Runtime Model

cases, they represent records that are referred by unique
identifiers. These records contain named slots. A slot is a
Lub class attribute, that can store either a primitive value or
the reference of an instance. An instance can be associated
with many lookup bases but only one can be activated at a
time (the current one).

An instance record or a lub record is associated with
one record which plays the role of meta-class instance. It
corresponds to the starting point of a method lookup. More
precisely, when an object receives a message, its lookup
starts from the meta-class of the object itself if it is not
associated with a lub record. This is the standard lookup
mechanism. Otherwise, the lookup starts from the meta-class
of the current lub record. If the lookup fails in the lookup
base, it starts again in the original object meta-class which
may trigger the method invocation or a does-not-understand
exception. Notice that when an instance is associated with
a lookup base, only this particular instance will perform its
lookup in its lookup base. All other instances of the same
class remain unaffected.

3.2.3 Language expressions

LookupBaseSet

1

Operation Expression
body

name

Variable Assignment

Read

ObjectLiteral

*

Bloc

1

Call

OperationCall

ClassInstanciation

content receiver
*

parameters

1

parameters*

local*

1

1

Figure 5. Lub Programming Constructs

Figure 5 depicts the body of Lub operations, which ex-
tends the Lub infrastructure depicted by figure 3. A Lub op-
eration is made of one body and a sequence of formal pa-
rameters. A body is an expression corresponding to an as-
signment, a variable read-access, an object literal, a block of
sub-expressions and a call. A call can be a method call or
a class instantiation. Lub also enables the use of a specific
operator specified by LookupBaseSet. Because of this oper-
ator, it is possible to add, change or remove the lookup base
currently associated with an object as shown in figure 2.

3.2.4 First implementation
Our implementation includes a parser and a compiler, for
which we rely on Pharo tooling (Bergel et al. 2013). The
compiler is rather simple and is able to generate code for
classes and methods defined with Lub.

Lookup mechanics is actually done using proxies and
message interception with Ghost (Peck et al. 2015). We
use what is called a virus in Ghost which infects a single
object. Once infected, the object, if inspected, does not lose
its identity. It is the same object with the same state from
both the user and the Pharo system point of view. However,
each message received by the object is intercepted by its
virus where we can route the lookup as described earlier.
The lookup base associated class is instantiated and when
we need to perform the lookup in it instead of the receiver
object, we forward the message to this instance.

4. Evaluation
In the following examples, we explore and evaluate Lub. We
first go through the lookup mechanism and then we address
our drone example with Lub. The Lub implementation with
full examples and results are available in a Pharo one click
image at http://kloum.io/lub.

4.1 Lookup through lookup base updates
In this example, we will show how the lookup is impacted
by lookup base changes. Following a methodology inspired
by Beugnard (2002), we declare three classes (X, J and K)
with four methods (m1, m2, m3 and m4) using our DSL:

c l a s s J {
a t t r i b u t e s {}
ope r a t i o n s {

m1
ˆ’J.m1()’.

m2
ˆ’J.m2()’.}}

c l a s s K {
s u p e r c l a s s := J.
a t t r i b u t e s {}
ope r a t i o n s {

m3
ˆ’K.m3()’.}}

c l a s s X {
a t t r i b u t e s {}
ope r a t i o n s {

m1
ˆ’X.m1()’.

m4
ˆ’X.m4()’.}}

K inherits from J and X is apart. We now want to define
two lookup bases, one associated with J and one associated
with K. Each method prints in a Java-like way the name
of the class where it has been found followed by its own
name (method signature). For convenience purposes, when
an object does not respond to a message, an error string is
printed. Lookup bases are defined as followed:
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LookupBase LUBJ {
c l a s s := J.

}

LookupBase LUBK {
c l a s s := K.
without { m2. }

}

We can see that LUBJ does not restrict operation access
to J and LUBK explicitly excludes m2 from K and its in-
heritance chain. In other words, an object using the context
LUBK will not be allowed to access m2. Now, each of these
methods will be successively called on an instance of x and
the results will be logged. This will be our first test sequence.
After this first sequence, a lookup base change will be trig-
gered to use LUBJ, and the same test sequence will be exe-
cuted. The same protocol will be repeated again for a change
of lookup base to LUBK:

”F i r s t t e s t ”
x := X new.
x m1; m2; m3; m4.

”Second t e s t ”
x lookupBase: LUBJ.
x m1; m2; m3; m4.

”Thi rd t e s t ”
x lookupBase: LUBK.
x m1; m2; m3; m4.

A simple illustration of context change is depicted in
figure 6 where we can see how the lookup base changes
the lookup. Results are shown in table 1. We can see that
for m1 and m3, the lookup behaves normally as if x was
successively an instance of X, J and K. As method m2 is
filtered in lookup base LUBK, the lookup behaves normally
for x as X (does-not-understand exception) and for x as J.
For x as K, x is not allowed to reach the method definition
despite the fact that the method is compiled in K, so a does-
not-understand exception is raised. The method m4 is a
particular case, for which the lookup cannot be resolved in J
and K, as m4 is not defined in any of these two classes. When
the lookup fails in J and K, it starts again in the original class
hierarchy of the object x and is able to find the method in X
- therefore x is able to respond to m4.

call/context x as X x as J x as K
m1() X.m1() J.m1() J.m1()
m2() ERROR J.m2() ERROR
m3() ERROR ERROR K.m3()
m4() X.m4() X.m4() X.m4()

Table 1. Lookup results through lookup base updates

So when the lookup base is unset for a given object,
the lookup remains consistent with what we could expect
from a smalltalk system. When the lookup base is changed,
the lookup starts in the base class pointed by the lookup
base specification. It can be caught and routed back to the
original class of the object if it fails. However, once started
(or rerouted) the standard system lookup is performed.

X J

K:x

Step 1 : 
x instance of X Step 2 : 

x instance of J

Step 3 : 
x instance of K

Figure 6. When the lookup base is changed, the object x
behaves as an instance of another class.

4.2 GPS loss in a fleet of drones
We implemented with Lub a simple simulation of our fleet
of two drones dr1 and dr2 from section 2. A simple event
system allows external events to interact with the system,
including the user. Drones log their actions into a transcript
console. The original behavior of the drones is to reach a
target on a grid using a GPS. They also have the capability
to communicate between each other and to know the exact
distance to each other. The simulated time is relative. At a
given time in the simulation, one of the drones will lose its
GPS and it will need to adapt.

We use two bases of code, the first one containing sim-
ulation classes with simulation utilities and simulated drone
code. We focus here on the drone position tracking feature.
The position tracker object is the object we are going to
adapt. When the drone needs to compute its position, the
interface pinPoint: aDrone of the tracker is always called:

po s i t i o nT ra ck e r : anObject
po s i t i o nT ra ck e r := anObject

p o s i t i o n
ˆs e l f po s i t i o nT ra ck e r

i f N o tN i l : [ : t r a c k e r |
”P r i n t i n g un ique t r a c k e r i d b e f o r e p i n p o i n t i n g
the drone p o s i t i o n ”
Tran s c r i p t show: ’Accessing ’.
T r an s c r i p t show: t r a c k e r p r i n t S t r i n g .
T r an s c r i p t space .
t r a c k e r p inPo in t : s e l f ]

The second base of code is the Lub script, in which we
are free to use any system class. We model two classes: Po-
sitionTracker which uses its drone GPS to find its coordi-
nates, and PeerPositionTracker which uses its drone mate
GPS to pinpoint its coordinates. PositionTracker is the de-
fault position tracker while PeerPositionTracker holds the
behavior we will later need for adaptation. Each position
tracker object is initialized with a unique ID: two different
instances cannot have the same ID. A lookup base Peer-
TrackerLookupBase is declared, allowing any Lub object to
use the class PeerPositionTracker as a lookup base. Note that
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for the sake of readability, logging instructions have been re-
moved from the following code:
c l a s s Pos i t i onTracke r {

a t t r i b u t e s { i d . }
ope r a t i o n s {

p inPo in t : drone
| gps |
gps := drone gps.
ˆgps i f N o tN i l : [ gps p o s i t i o nFo r : drone] .

p r i n t S t r i n g
ˆ’Tracker ’ , s e l f i d p r i n t S t r i n g .

}
}

c l a s s PeerPos i t i onTracke r {
a t t r i b u t e s { }
ope r a t i o n s {

p inPo in t : drone
| peerDronePos i t i on peerDroneDistance |

”Asking pee r drone GPS coo rd i n a t e s ”
peerDronePos i t i on := drone peerDrone p o s i t i o n .

”Asking pee r drone d i s t a n c e from
the c u r r e n t drone”

peerDroneDistance :=
peerDronePos i t i on distanceFrom: drone.

”Computing the c u r r e n t drone coo r d i n a t e s ”
ˆ pee rDronePos i t i on − peerDroneDistance.

}
}

LookupBase PeerTrackerLookupBase {
c l a s s := PeerPos i t i onTracke r .

}

Two events are scheduled in the simulation, in the form of
Smalltalk blocks. At relative time t=10 we simulate dr2 GPS
loss and at t=15 we update its lookup base with PeerTrack-
erLookupBase:
”S imu la t i on even t s ”
gpsDi sab l ingEvent := [ : s imu l a t i o n |

( s imu l a t i o n agentNamed: ’dr2’) disableGPS] .
s imu l a t i o n addEvent: gpsD i sab l ingEvent atTime: 1 0 .

contextChangeEvent := [ : s imu l a t i o n |
| t r a c k e r |
t r a c k e r :=

( s imu l a t i o n agentNamed: ’dr2’) po s i t i o nT ra ck e r .
t r a c k e r lookupBase: PeerTrackerLookupBase] .

s imu l a t i o n addEvent: contextChangeEvent atTime: 1 5 .

We can follow the code execution through the following
log traces. The simulation starts and both drones use their
default simulation tracker, which is an instance of Position-
Tracker. Each drone logs its simulation tracker access and its
new position. Drones are moving towards an arbitrary target
position fixed at point 50@50:
t = 6
Acces s ing Tracker 1
[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (86@43)

Acces s ing Tracker 2
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (5@5)

t = 7
Acces s ing Tracker 1
[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (85@44)

Acces s ing Tracker 2
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (6@6)

t = 8
Acces s ing Tracker 1
[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (84@45)

Acces s ing Tracker 2
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (7@7)

At relative time t = 10, the second drone stops moving. It
is not able to access its GPS anymore:

t = 10
Acces s ing Tracker 1

[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (82@47)
Acces s ing Tracker 2

[ dr2 : GPSMobileDrone] No p i n po i n t d e v i c e a v a i l a b l e
t = 11
Acces s ing Tracker 1

[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (81@48)
Acces s ing Tracker 2

[ dr2 : GPSMobileDrone] No p i n po i n t d e v i c e a v a i l a b l e

At t = 15, the lookup base update event occurs and
changes the Tracker 2 instance’s lookup base. When drone
dr2 accesses its position tracker and calls its interface pin-
Point:, the lookup is performed in the PeerTrackerLookup-
Base lookup base. The pinPoint: method of PeerPosition-
Tracker is then called instead of the one from Position-
Tracker and the behavior of dr2 is adapted accordingly:

t = 15
Tracker 2 updat ing lookup base w i th :
Lookup Base f o r : Pee rPos i t i onTracke r

Acces s ing Tracker 1
[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (77@50)

Acces s ing Tracker 2
( dr2 r e qu e s t i n g dr1 p o s i t i o n : Acces s ing Tracker 1 )
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (9@9)

t = 16
Acces s ing Tracker 1

[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (76@50) ’
Acces s ing Tracker 2

( dr2 r e qu e s t i n g dr1 p o s i t i o n : Acces s ing Tracker 1 )
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (10@10)

t = 17
Acces s ing Tracker 1

[ dr1 : GPSMobileDrone] t h i s i s d r1 a t (75@50)
Acces s ing Tracker 2

( dr2 r e qu e s t i n g dr1 p o s i t i o n : Acces s ing Tracker 1 )
[ dr2 : GPSMobileDrone] t h i s i s d r2 a t (11@11)

In addition to the behavior adaptation, we can see that
state of the position trackers is still the same: trackers’
unique IDs are unchanged. The position tracker instance
has retained its identity despite the lookup base update, i.e.
the object itself has not been exchanged with another object.
Furthermore, only one of the PositionTracker instances has
been impacted. We can see two distinct objects of the same
class, Tracker 1 and Tracker 2, behaving differently. Their
unique IDs ensure they are separate instances and the log
shows their difference of behavior.

Note that the printString method is not defined in PeerPo-
sitionTracker. When the PeerPositionTracker position mes-
sage is sent to drone dr2, the position tracker is asked to print
itself on the log output. The lookup is performed in Peer-
TrackerLookupBase but, as it does not find any printString
method, it starts again in the original object class hierarchy
(PositionTracker). Thus, the executed print code is the one
defined in the original position tracker.

5. Related Work
In the following section we discuss other approaches and
compare them to Lub.
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5.1 Context oriented programming
COP languages have been studied and compared by Sal-
vaneschi et al. (2012). We focus on the most common ap-
proaches and complete them with more recent ideas as a base
of comparison with Lub.

5.1.1 Layer based languages
Many context oriented languages have been implemented
over the years, in the form of language extensions, like,
among others, ContextL for CLOS (Costanza and Hirschfeld
2005), ContextS for Smalltalk (Hirschfeld et al. 2008) or
ContextJ for Java (Appeltauer et al. 2011). They address the
particular need of behavior adaptation depending on con-
texts. Contexts are usually defined as layers, which can be
(de)activated and composed at runtime using specific lan-
guage constructs. Partial methods are implemented in layers
and can be invoked within a specific layer activation scope
(i.e. the context). The scope is typically a block of code and
outside this block, the layer is never active. Layers cannot
usually be activated on a per-instance basis. Furthermore,
as this activation depends on the use of (nested) blocks of
code confined in a specific thread, fine management of layer
activation on external event initiated from other threads is
difficult.

EventCJ (Kamina et al. 2011) is a DSL that brings a
modular control of layer activation, making it possible to
manage layer transitions based on events. Behavior adapta-
tion is made on a per-instance basis. A layer transition can
then be triggered from outside the base program thread and
affect a single object. EventCJ is, in terms of objectives, the
closest to our approach. However, in Lub, since the behavior
adaptation activation strategy is left open, the developer can
choose between Lookup Base updates based on a of mechan-
ics event or a manually scoped activation (or both).

Von Löwis et al. (2007) propose two mechanisms that
extend layers. They implemented implicit layer activation,
allowing a layer to be declared as active. Layered method
composition is made dynamically by checking all active lay-
ers upon a method invocation. Therefore, (de)activation of
layers is made only when needed, and specific code to scope
layer activation (with keyword) is no longer necessary. They
also introduced dynamic variables to hold context-specific
state. A dynamic variable is accessible from anywhere in
a running program, especially from other threads. It makes
possible for layer management to rely on external states
and events. Efficiency of using such constructs has not been
taken into consideration in their study.

L is an ongoing work (Hirschfeld et al. 2013a,b; Igarashi
and Felgentreff 2015) relying only on layers instead of a
combination of classes and layers. Behavior and state are
defined and can be shared in layers, with an access control

to use them through layer composition. This access con-
trol brings verbosity to the code, and the authors are still
working on a simpler syntax. Behavior adaptation is made
by activating (nested) layers like in other layer-based lan-
guages. As there is no more classes, lookup is exclusively
done through layers, taking into account restriction access to
methods (via a Smalltalk-inspired lookup). Layers activation
is still bounded to an execution scope and adaptation cannot
simply be performed on a single object.

As COP languages are based on layer activation and deac-
tivation throughout the execution of the program, the impact
of repeatedly switching layers on and off on performances
may become a concern. Costanza et al. (2006), while rais-
ing this question, show that it is possible to write an efficient
program with layer constructs.

5.1.2 Role based languages
The Epsilon model (Tamai et al. 2005) proposes to use roles
as a mechanism for object to adapt their behavior to their
environment, which they call Context. The EpsilonJ lan-
guage, based on Epsilon model, allows the definition of a
Role which implements context-specific behavior. A role in-
stance can bind to exactly one object, which in return can be
bound to multiple roles instances, assuming role composi-
tion.

NextEJ (Kamina and Tamai 2009) brings type safety and
role scoping to the Epsilon model. As for layers, roles in
NextEJ are only active within a scope. Furthermore, roles
states are preserved upon deactivation, allowing its bound
object to reactivate it later and recover its context related
state. Both NextEJ and EpsilonJ provide behavior adaptation
on a per-instance basis, but it is not obvious how to simply
manage role (de)activation from outer threads events.

5.2 Other work
5.2.1 Talents
Talents (Ressia et al. 2014) are objects, called units of reuse.
A talent models behavior that a specific object can acquire or
lose dynamically at runtime. To extend an object’s features,
one must instantiate a new Talent object, model the features
(e.g. define new methods) and ask the object to acquire
the talent object. The lookup is preferably performed in the
talent object instead of in the object that acquired the talent.
For example, if an invoked method is both defined in the
talent and in the object using the talent, the talent method
will always be called instead of the original object’s method.
This allows a per-instance basis behavior adaptation and no
conflict resolution is needed. Talents are also composable,
and cannot be composed if any conflict between the talents
exists. These conflicts have to be resolved manually.

Talents feature a very effective solution, allowing dy-
namic behavior adaptation at runtime on a per-instance ba-
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sis. However, there is no abstraction nor control structure to
properly handle a COP mechanism, which we want to pro-
vide with our lookup bases. Also, composition conflicts and
behavior removal in Talents can be a source of difficulties
when trying to assess if an adaptation can cause failures.

Conceptually, Lub could rely on Talents to provide the
lookup base mechanisms. Although Lub has been imple-
mented with other means, a comparison with a new imple-
mentation based on Talents could be interesting.

5.2.2 Reclassification
FickleII (Drossopoulou et al. 2002) is a strongly typed
object oriented language providing a reclassification oper-
ation: an object can change its class membership at run-
time. FickleII ensures that an object subject to reclassifica-
tion will never attempt to access non existing members, thus
avoiding does-not-understand exceptions. However, an ob-
ject of a given class can be reclassified to a target class only
if both classes share a common root superclass. A root class
is a specific kind of class introduced in FickleII , therefore
an object cannot be reclassified to a class outside the scope
of its root class hierarchy. Lub allows an object to change its
lookup base to any class of the system, but it is then possible
for a message to not be understood by its receiver.

5.2.3 Aspect oriented approaches
Tanter et al. (2006) propose an aspect oriented system with
context-specific behavior management, in the form of an
open framework. While putting aside performance and ef-
ficiency concerns, they describe and analyze the needs and
implications of context-awareness of aspects. As they state,
aspects and COP do not follow the same paradigms and as
such are not easy to compare. However, we find some of
their implemented features interesting for behavior adapta-
tion, such as keeping track of each defined context and their
state.

5.2.4 Framework based approaches
Context aware systems (Baldauf et al. 2007) aim at adapt-
ing their behavior to their current context. These systems are
implemented as frameworks, with tools and user level ser-
vices. Contexts are usually reified as real world entities, i.e.
as models. Other frameworks, like Fractal (Mantilla 2011), a
component based architecture, allow dynamic software evo-
lution at execution time.

These works target software adaptation and/or evolution
at an architecture level. Frameworks provide system entities
that allow the software to perform its adaptation to a context.
With Lub, we propose a meta-level approach, where the
adaptation is part of the language semantics.

6. Conclusion and future work
We have introduced Lub, a new DSL for dynamic context
oriented programming. We described the Lookup Base, the

new abstraction the language brings to COP and illustrated
how it impacts the lookup mechanics in Lub.

For now, all the features we described have not been im-
plemented yet. We are currently working on this implemen-
tation and on more detailed examples. Lub does not imple-
ment safety checks yet and we deliberately put performances
concerns aside. The next step after a more complete imple-
mentation would be to compare the language to other ap-
proaches in terms of safety and efficiency, for example a Lub
solution based on Talents. We also think of going further in
the Lub’s integration into Pharo, in the form of an object
interface instead of an internal compiled language.

For example, we will investigate message interception at
the meta-level instead of using a virus-proxy. We will also
investigate a real lookup instead of forwarding the message
we want to re-route.

We also plan to experiment on a physical target device.
We plan to use an embedded version of Pharo to evalu-
ate Lub on a home made robot built around an electronic
card. This would allow us to study a Lub program evolving
through a real case of behavior adaptation instead of a pure
simulated example.
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